80 research outputs found

    Micro field emitter drive CdTe X-ray imager

    Get PDF

    Making Robotic Dogs Detect Objects That Real Dogs Recognize Naturally: A Pilot Study

    Get PDF
    The recent advancements in artificial intelligence (AI) and deep learning have enabled smart products, such as smart toys and robotic dogs, to interact with humans more intelligently and express emotions. As a result, such products become intensively sensorized and integrate multi-modal interaction techniques to detect and infer emotions from spoken utterances, motions, pointing gestures and observed objects, and to plan their actions. However, even for the predictive purposes, a practical challenge for these smart products is that deep learning algorithms typically require high computing power, especially when applying a multimodal method. Moreover, the memory needs for deep learning models usually surpass the limit of many low-end mobile computing devices as their complexities boost up. In this study, we explore the application of lightweight deep neural networks, SqueezeDet model and Single Shot Multi-Box Detector (SSD) model with MobileNet as the backbone, to detect canine beloved objects. These lightweight models are expected to be integrated into a multi-modal emotional support robotics system designed for a smart robot dog. We also introduce our future research works in this direction

    Micro electron field emitter array with focus lenses for multi-electron beam lithography

    Get PDF
    科研費報告書収録論文(課題番号:13305010・基盤研究(A)(2) ・H13~H15/研究代表者:江刺, 正喜/ナノメートルの精度で動く分布型マイクロ・ナノマシン

    Specialized CNT-based Sensor Framework for Advanced Motion Tracking

    Get PDF
    In this work, we discuss the design and development of an advanced framework for high-fidelity finger motion tracking based on Specialized Carbon Nanotube (CNT) stretchable sensors developed at our research facilities. Earlier versions of the CNT sensors have been employed in the high-fidelity finger motion tracking Data Glove commercialized by Yamaha, Japan. The framework presented in this paper encompasses our continuing research and development of more advanced CNT-based sensors and the implementation of novel high-fidelity motion tracking products based on them. The CNT sensor production and communication framework components are considered in detail and wireless motion tracking experiments with the developed hardware and software components integrated with the Yamaha Data Glove are reported

    Semiconductor Thermal Neutron Detector

    Get PDF
    The  CdTe  and  GaN  detector  with  a  Gd  converter  have  been developed  and  investigated  as  a  neutron  detector  for neutron  imaging.  The  fabricated  Gd/CdTe  detector  with  the  25  mm  thick  Gd  was  designed  on  the  basis  of  simulation results  of  thermal  neutron  detection  efficiency  and  spatial  resolution.  The  Gd/CdTe  detector  shows  the  detection  of neutron  capture  gamma  ray  emission  in  the  155Gd(n,  g)156Gd,  157Gd(n,  g)158Gd  and  113Cd(n,  g)114Cd  reactions  and characteristic X-ray emissions due to conversion-electrons generated inside the Gd film. The observed efficient thermal neutron detection with the Gd/CdTe detector shows its promise in neutron radiography application. Moreover, a BGaN detector has also investigated to separate neutron signal from gamma-ray clearly. Keywords: detector, neutron, semiconductor, therma

    Communicating with Humans and Robots: A Motion Tracking Data Glove for Enhanced Support of Deafblind

    Get PDF
    In this work, we discuss the design and development of a communication system for enhanced support of the deafblind. The system is based on an advanced motion tracking Data Glove that allows for high fidelity determination of finger postures with consequent identification of the basic Malossi alphabet signs. A natural, easy-to-master alphabet extension that supports single-hand signing without touch surface sensing is described, and different scenarios for its use are discussed. The focus is on using the extended Malossi alphabet as a communication medium in a Data Glove-based interface for remote messaging and interactive control of mobile robots. This may be of particular interest to the deafblind community, where distant communications and robotized support and services are rising. The designed Data Glove-based communication interface requires minimal adjustments to the Malossi alphabet and can be mastered after a short training period. The natural interaction style supported by the Data Glove and the popularity of the Malossi alphabet among the deafblind should greatly facilitate the wider adoption of the developed interface

    Characteristics of unique endocytosis induced by weak current for cytoplasmic drug delivery

    Get PDF
    We previously reported that 20 a weak current (WC, 0.3-0.5mA/cm2) applied to cells can induce endocytosis to promote cytoplasmic delivery of hydrophilic macromolecules (MW: < 70,000), such as dextran and siRNA, which leak from WC-induced endosomes into the cytoplasm (Hasan et al., 2016). In this study, we evaluated the characteristics of WC-mediated endocytosis for application of the technology to cytoplasmic delivery of macromolecular medicines. WC induced significantly higher cellular uptake of exogenous DNA fragments compared to untreated cells; the amount increased in a time-dependent manner, indicating that endocytosis was induced after WC. Moreover, following WC treatment of cells in the presence of an antibody (MW: 150,000) with the lysosomotropic agent chloroquine, the antibody was able to bind to its intracellular target. Thus, high molecular weight protein medicines delivered by WC-mediated endocytosis were functional in the cytoplasm. Transmission electron microscopy of cells treated by WC in the presence of gold nanoparticles covered with polyethylene glycol showed that the WC-induced endosomes exhibited an elliptical shape. In the WC-induced endosomes, ceramide, which makes pore structures in the membrane, was localized. Together, these results suggest that WC can induce unique endocytosis and that macromolecular medicines leak from endosomes through a ceramide pore

    CO Gas-Induced Resonance Frequency Shift of ZnO-Functionalized Microcantilever in Humid Air

    Get PDF
    Resonance frequency shift of a zinc oxide- (ZnO-) functionalized microcantilever as a response to carbon monoxide (CO) gas has been investigated. Here, ZnO microrods were grown on the microcantilever surface by a hydrothermal method. The measurement of resonance frequency of the microcantilever vibrations due to the gas was carried out in two conditions, that is, gas flow with and without air pumping into an experiment chamber. The results show that the resonance frequency of the ZnO-functionalized microcantilever decreases because of CO in air pumping condition, while it increases when CO is introduced without air pumping. Such change in the resonance frequency is influenced by water vapor condition, and a possible model based on water-CO combination was proposed
    corecore